IBM enables water quality predictions for chesapeake bay in partnership with world community grid and university of virginia

IBM's World Community Grid and the University of Virginia today launched the Computing for Sustainable Water, a project to simulate and predict the environmental and economic effects of agricultural, commercial, and industrial decisions over the next 20 years in and around the Chesapeake Bay, America's largest estuary.
By harnessing the massive power of two-million computers -- a record number recently reached -- provided by close to 600,000 World Community Grid volunteers in 80 countries, the effort seeks to compress and collapse 90 years' worth of computational research into just one year.
Insights from the Computing for Sustainable Water Project may help inform future public policy decisions for the Chesapeake Bay, but also for that of 400 major waterways and associated ecosystems worldwide -- half of which are under stress. It may also produce insights that will be relevant to water management practices that address the more than 1.2 billion people who currently lack access to clean, safe drinking water.
Individuals, businesses, and not-for-profits -- such as local governments, social service agencies, and schools -- can participate in University of Virginia's effort beginning today by downloading a free app from World Community Grid to their personal computers and similar non-mobile devices. The app enables volunteers' computers to perform calculations for the Computing for Sustainable Water Project when their systems are not in use -- even between keystrokes. The process runs automatically, requires no time from volunteers, resists viruses, is environmentally friendly with little additional energy usage, and does not affect computer speeds.
For the Computing for Sustainable Water Project, the University of Virginia built a mathematical model that simulates the actions of 17.4 million people living in the 64,000 square-mile Chesapeake Bay watershed. It will predict the monthly and cumulative effects of agriculture, transportation, energy, and industry-related decisions made over the course of 20 years. Many assumptions will be taken under consideration in each scenario, such as the predicted proportion of homes connected to septic systems and wells, as compared to those connected to public sewer and water systems.
The project builds on an earlier modeling effort by University of Virginia. Called the UVA Bay Game, this simulation model primarily serves to raise awareness and educate people about the consequences of natural and man-made changes to the Chesapeake Bay watershed. Human game players simulate the decisions of farmers, land developers, watermen, and regulators. The results provide general insight into watershed behavior and management.
"Our findings can inform policy—and stimulate individual behavior change—in the Chesapeake Bay," said Gerard Learmonth, a University of Virginia systems and information engineering professor who designed and built the UVA Bay Game and the Computing for Sustainable Water Project. "Envisioning scenarios also can easily be extended to other regions of the world facing similar stresses on water quality."
Scientists understand well what happens to water when specific changes in nature occur, but they can't as easily predict and anticipate how humans might influence those changes. To predict outcomes and unintended consequences of human-influenced development with any certainty, they need to simulate many possible cause-and-effect and "what-if "scenarios. To make timely progress, the complexity and amount of data involved requires fast and powerful computing -- an expensive proposition. World Community Grid, a kind of public supercomputer created and funded by IBM, provides the necessary computational power free of charge.
"The University of Virginia's Computing for Sustainable Water Project, proudly hosted on IBM's World Community Grid, is a terrific example of what happens when academia and the private sector team up to address critically important issues facing the environment and society," said Stanley S. Litow, IBM's vice president of Corporate Citizenship and Corporate Affairs, and president of IBM's International Foundation. "With two-million devices now powering World Community Grid, we're confident that the University of Virginia's project to explore the dynamics and decision affecting water quality will have more than enough resources at its disposal to shed to new light on how we all can be better stewards of the environment."
World Community Grid hosts other clean-water projects, such as an effort at Tsinghua University in China to develop ways to filter, scrub or treat polluted freshwater and seawater with less expense, complexity, and energy than current techniques. Other projects hosted by World Community Grid seek a faster way to cure disease (some of which are water-borne, such as schistosomiasis), find renewable energy materials, and develop healthier food staples.
Background Information
IBM
For more than six decades, IBM Middle East & Pakistan has played a vital role in shaping the information technology landscape of the region. Today, IBM is part of the region’s technological fabric, solving real-world business and societal challenges, through its offices in UAE, Saudi Arabia, Qatar, Kuwait and Pakistan, and also a diversity of centers across the region.